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The general formalism of first-quantized para-particle theory is presented in a 
way that clearly exposes the more important group-theoretic foundations. This 
is then used to give a simple and straightforward solution to a problem concerning 
possible changes in a particle's statistics through collisions, first posed by Pauli 
in 1927, and to show that para-particle statistics are different from those obeyed 
by particles in a "para-gas." These arguments accord with the overall aim of 
demonstrating that para-particle theory is not as theoretically impenetrable as 
is usually thought, but in fact possesses a kind of generalized elegance. 

1. I N T R O D U C T I O N  

I p resen t  here a s imple  so lu t ion  to a p r o b l e m  first posed  by  Paul i  in 
1927. This is the ques t ion  o f  whether  it is poss ib le  for  a par t ic le  to change  
its s tat is t ical  type  th rough  col l is ions with an N-pa r t i c l e  system. Any  answer  

to this ques t ion  will obv ious ly  involve a cons ide ra t ion  of  which  t rans i t ions  
are a l lowed  be tween  the par t ic le ' s  states and  will therefore  have a funda-  
menta l  bea r ing  on the p r o b l e m  of  the concre te  s tat is t ical  behav io r  o f  
para-par t ic les .  In  the final sect ion o f  this work  I demons t r a t e  that  this 
behav io r  cannot ,  in fact,  be  cap tu red  by the we l l -known " p a r a - g a s "  theory ,  
in which  the average n u m b e r  of  par t ic les  in a g roup  of  states is d e p e n d e n t  
upon  a p a r a m e t e r  giving the m a x i m u m  n u m b e r  of  par t ic les  that  can occupy  
any given state. 

2. T H E  G E N E R A L  F O R M A L I S M  

Cons ide r ,  for  s impl ic i ty ,  a system of  N ind i s t ingu i shab le  par t ic les  o f  
the same k ind  and with zero spin.  A pa r t i cu la r  ket  If) for such an assembly  
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can be obtained in the well-known way (Dirac, 1978, p. 207) by taking the 
tensor product of kets for each particle by itself: 

I f )  1 2 N =[a,) |  �9 " |  [aN) 
~- [a ' , ' - .  aN) (1) 

where the subscripts label the particles and the superscripts the states. 
These product functions and their suitably permuted variants span a 

Hilbert space ~g/~ constructed from N single product spaces: 

~ N = ~ a l ~ ) ~ ( ~ ) ' ' "  ~~ 1 (Nt imes)  

Inside each YgN one can define unitary operators describing the permu- 
tation of particles of the same kind. These particle permutation operators 
Pi form a group, usually denoted by SN, and can be defined by 

(/) :) p i  = = 
F i I" 1 F 2 r 3 

The application of such an operator to a ket for the assembly produces 
another ket of the form (1) spanning ~N (Dirac, 1978, p. 208). 

We now introduce the following postulate. 

The Indistinguishability Postulate (IP). If a particle permutation Pi is 
applied to any ket for the assembly, then there is no way of distinguishing 
the resulting permuted ket from the original unpermuted one by means of 
any observation at any time (Greenberg and Messiah, 1964, p. 250; Hartle 
and Taylor, i969, p. 2044). 

More formally, this requirement can be expressed in terms of expecta- 
tion values: 

(Pifl Q[Pif) = (fl  Q]f) 

where the state Pilf) is abbreviated to IPif). 
Since Pi is a unitary operator, we have 

(f[ Qlf)  = (fl  Pi'  QP, If) (2) 

where Q is some suitably defined Hermitian operator. 
Since this must hold for any vector If), it will hold with If) replaced 

by any linear combination of vectors. Applying this to the two superpositions 
I f )+  alg) and [ f )+  ia[g) gives 

(f[Qlg) = (flP?lQpi[g), f, g ~ ~7(N 

or  

[Pi, Q] = 0 

That is, all physical observables must be particle permutation invariant. 
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In addition to particle permutation operators, one can also define place 
permutation operators P~, which permute the state labels and can be defined 
by 

3 

r i  r l  r 2  r 3  �9 , . i, N 

[See Ref. Dirac (1978, p. 217) for a discussion of the formal differences 
between the Pi and the /5.] 

As is well known, these two kinds of permutation operator are related 
by 

Elf)  = P[']f) 

and whereas the P~ cannot be regarded as observables, self-adjoint functions 
of the /5 can (Dirac, 1978, Landshoff and Stapp, 1967, p. 73; Stolt and 
Taylor, 1970a, p. 6). 

Having identified the observables for N indistinguishable particles as 
being that subset of observables for N labeled particles that commute with 
the P~, this following from IP, the next step is obviously to establish the 
correspondence between the physical states of the system and the vectors 
of ~N. Since any state can be completely characterized by specifying the 
expectation values of all observables, these vectors must possess the follow- 
ing simple properties: 

1. Two vectors If) and If'> representing the same state must give the 
same expectation value for all observables, i.e., 

(f] Qlf> = (f'[ Qlf), all Q with [Q, P~] = 0 

Thus, IP implies that whenever a vector If> in gN corresponds to some 
physical state, then the vector Pi[f) for any i must correspond to the same 
state. It is at this point, of course, that the "ordinary" and para-particle 
theories diverge, since the fundamental assumption of the former that every 
physically distinct state must correspond to some unique ray in ~N is 
dropped in the latter and the possibility is allowed of a single state of the 
assembly of particles corresponding to some larger collection of vectors in 
this space (Hartle and Taylor, 1969, p. 2045; Stolt and Taylor, 1970a, p. 1). 

2. Two vectors If") and I f ' )  representing different states must give 
different expectation values for some observable, i.e., 

(f"'lOlf")•(f"lOlf'), someQwith[Q,P~]=o 

The apparatus of group theory can then be used to determine the sets 
of vectors possessing these qualities (Hartle and Taylor, 1969). 

We begin by considering an arbitrary vector If} in ~N and the N!- 
dimensional subspace spanned by the vectors P~]f} for all permutations i 
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in the group SN. This subspace can be decomposed into irreducible sub- 
spaces invariant under the Pi. Each subspace carries an irreducible rep- 
resentation D ~" of SN and the number of subspaces carrying any irreducible 
representation D ~" is equal to the dimension N ~ of D ~. The problem now, 
of course, is to construct basis functions for the various irreducible rep- 
resentations of SN. 

The procedure for doing this is presented in Hammermesh (1962, pp. 
85 and 111), and we give here a streamlined version suitable for our purposes. 

Note, first, that in general any function If) is expressible as the sum 
of  functions that can act as basis functions in the various irreducible 
representations: 

I f ) = E  ~ If)  (~) (3) 
v i=1 

The basis functions for the ~,th irreducible (unitary) representation satisfy 

QRlf) (~) = ~(~) U~)(U)lfj)  (~) 
J 

where QR is any operator of the group considered. 
The necessary and sufficient condition a given function must satisfy in 

order that it may belong to the ith row of  a given representation is 

E D}~)*(R)QRIf) (~)= h ]f)(~) (4) 
R n u  

Thus, given a function ]f)(~) that satisfies the above requirements, one can 
associate with it n~ -  1 "partners" given by 

=n~ E DI~')*(R)Q.If) (~) 
If')(~) h R 

so that the set of functions satisfies (4). 
Returning to (3), the question now is, given the function If), how does 

one find the ]f)(~) in the first place? In other words, how does one resolve 
the given function into a sum of functions, each of which belongs to a 
particular row of some irreducible representation? 

Applying the projection operators 

iio. ) _ n~ ~ D~t)*(R)QR 
JJ - - h  

to equation (3) gives the desired functions: 

ifj)(~)__ n~ 
�9 
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Then, applying the transfer operator 

t lv 

gives the nv - 1 partners such that the whole set satisfies equation (4), thus 
giving the functions If)  (v~ that form a basis for the uth irreducible rep- 
resentation. 

However, it can be shown (French, 1985, p. 149) that 

II~ njj =II  U 

and thus the first stage above can be dispensed with, a result Hartle and 
Taylor (1969) clearly knew, but failed to make explicit. Applying the H~j to 
the arbitrary state vector If)  with the Pg in the role of the QR, one then 
obtains the basis functions If): 

If~)=n~lf) 

--  np, 
----h ~ D}~*(R)P(R)lf) 

These functions II0]f) support representations of both the P's and the 
P's and therefore satisfy the equations 

P, lf,) = E Ifj)UJ~(R) (5) 
i 

Pdf) = E ]fj > D ~ ( R )  (6) 
i 

Equation (5) implies that for fixedj and for i = 1 , . . . ,  N, these functions 
span an irreducible subspace invariant under the Pi. Within this subspace--  
or generalized ray, as it has been called (Greenberg and Messiah, 1964, p. 
251)--the function If)  transforms as the ith basis function of the irreducible 
representation D ~'). The fact that the Pi leave any function in the same 
subspace, or generalized ray, reflects the fact that two state functions that 
differ by a permutation of the particle labels must represent the same state, 
as we noted above. 

Equation (6) implies, similarly, that for fixed i and j = 1 , . . . ,  N, the 
functions span a subspace invariant under the/~i and within this space If~) 
transforms as the j th  basis function of the irreducible representation D ~'). 
Clearly in general the place permutation operators carry a function from 
one subspace to another, which is consistent with the fact that place 
permutations can change the physical state. [For an illustration of the 
complementary role of the P's and/~'s,  see Stolt and Taylor (1970a, p. 9).] 
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It is worth noting that in the case of the one-dimensional symmetric 
and antisymmetric representations, D = 1 or :el. Thus, Pi and Pi are the 
same for the symmetric and antisymmetric vectors and so the distinction 
between place and particle permutations is not manifested in the case of 
"ordinary" bosons and fermions. 

Using IP and Schur's lemma it can easily be shown that these basis 
functions If)  indeed satisfy the two requirements for vectors to represent 
states (Hartle and Taylor, 1969, p. 2045). 

The next step is to consider which irreducible representations corre- 
spond to states. In the boson and fermion cases this is perfectly straightfor- 
ward, since only the rays of the totally symmetric or totally antisymmetric 
representations are acceptable. The case of para-particles requires a little 
more elaboration, however. 

If ~ is defined to be the subspace spanned by the basis functions If)  
(with/x fixed), then the Hilbert space ~N can be decomposed into a number 
of subspaces: 

/z 

Although ~ ,  is defined with respect to a definite basis, it can be seen that 
it is actually basis-independent. It contains all functions associated with 
the irreducible representation D r and since every pure state must be 
associated with a definite irreducible representation, each such state is 
represented by a generalized ray of vectors coniained in some ~ .  

However, although every pure state is associated with a definite irreduc- 
ible representation, not every one of the latter is associated with an attainable 
state, as the example of bosons and fermions makes clear. In general the 
statistical type of a para-particle is identified by specifying the set of all 
irreducible representations in each SN that corresponds to attainable states 
of the particle. 

It was demonstrated by Hartle and Taylor (1969) that not every family 
of irreducible representations corresponds to a possible statistical type. 
These results were then extended by Stolt and Taylor (1970b, c), who showed 
that all possible types can be divided into two kinds: those of finite and 
those of infinite order. The former can be further classified into para-bosons 
and para-fermions of order p = 1, 2, 3 , . . . ,  but there are infinitely many 
types of para-particles of infinite order. 

The space appropriate to a para-particle of a given statistical type T 
is the subspace of ~N containing just those vectors that correspond to 
allowed irreducible representations. If the set of all such representations 
associated with the attainable N-particle states of a particle of type T is 
denoted by TN, then the appropriate space is simply the direct sum (Stott 
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and Taylor, 1970a, p. 10) 

r c ~  

The final step is to eliminate the "generalized ray" and restore the 
usual connection between states and rays in quantum mechanics (Hartle 
and Taylor, p. 2046; Stolt and Taylor, 1970a, pp. 10-11). 

We note that each ~r  can be further decomposed, 

nix 

i = l  

where ~r,i is the space spanned by the If} for fixed /x and i. Since each 
"generalized ray" (corresponding to an nr-dimensional subspace of ~r)  
has a unique one-dimensional intersection with each ~r,i, one could always 
label states of symmetry D r by vectors from one specific ~.,~, ~.,1 say, and 
then each state is labeled by a unique ray. The ~.,~ for i # 1 can be ignored 
because any ~r.i, and in particular ~..1, is invariant under all observables. 
This follows from the fact that all observables commute with the P's. In 
particular, since this invariance applies to the Hamiltonian, all representative 
vectors will remain in a particular ~.,i for all times if they are chosen there 
initially. 

Thus, the formalism in which states of symmetry D r are represented 
by generalized rays in ~r  can be replaced by one in which the same states 
are represented by rays in ~,,/. For a particle of type T the new, smaller 
space is 

T 
ff~~ ray = @ ~kt,l 

r~TN 

The essential point behind this elimination is that any state represented 
by a multidimensional subspace with basis {If)} can be represented 
arbitrarily by the number one basis vector If1). Every state can then be 
labeled by a unique ray in ~r,~ rather than a "generalized ray" in ~,,i, thus 
restoring the usual connection between states and rays. 

This not only allows one to regain all the usual results of "ordinary" 
quantum mechanics, it also permits a direct comparison between the first- 
and second-quantized formalisms. Stolt and Taylor have demonstrated that 
for every para-particle of type T of finite order, there exists a natural 
isomorphism between 7- ~N.ray and the N-particle space for the corresponding 
para-field. Thus, they established that every type of second-quantised para- 
field is equivalent to a unique first-quantized para-particle of finite order 
and vice versa (Stolt and Taylor, 1970a). 

Having set out the basic formalism, and, one hopes, demonstrated that 
it is not quite as forbidding as is sometimes thought, we are now in a 
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position to discuss the possibility of transitions between states of different 
statistical type. 

3. TRANSITIONS BETWEEN STATES CORRESPONDING TO 
REPRESENTATIONS OF DIFFERENT STATISTICAL TYPE 

We shall consider the simple case of a three-particle assembly. Thus 
we begin by generating the basis functions for three particle states (French, 
1985, pp. 156-160). 

Using the procedure given above together with the real orthogonal 
matrices of the irreducible representations of the permutation group $3 and 
expressions for the P's and/5's in terms of their effect upon a state vector 
of the form If>, we obtain, very straightforwardly, the four "mixed sym- 
metry" basis functions spanning the so-called "triangular" subspaces [com- 
pare with those of Hartle and Taylor (1969)]: 

1 1 2 3 1 2 3 1 2 3 f~l = ~ (2[ala2a3)+ 2[a2ala3)- la3a2al) 

1 2 3 1 2 3 1 2 3 
-[  la3a2) -la2a3al) -[a3a la:2)) 

g(la3a2al)- f ~ l  1 1 2 3 1 2 3 1 2 3 1 2 3 [a3ala2)) la2a3al)+ [ala3a2)- 

~(]a3azal)- f 1 2  ~ 1 1 2 3 1 2 3 1 2 3 
" la2a3al> [ala3a2)+ 

1 2 3 -la3ala2)) 

1 1 2 3 1 2 3 1 2 3 
f'J2 =~--~ [ 2Iala2a3)- 21a2ala3) + [a3a2al) 

1 2 3 1 2 3 1 2 3 
+ lala3a2) -la2a3al)-la3ala2)) 

The symmetric and antisymmetric functions spanning the one- 
dimensional symmetric and antisymmetric subspaces are simply 

= g(]ala2a3) + la2ala3) + la3a2al) + lala3a2) s 1 1 2 3 1 2 3 1 2 3 1 2 3 

1 2 3 1 2 3 
+ la2a3al)+ la3ala2)) 
1 1 2 3 1 2 3 1 2 3 1 2 3 

)cA = g(la 1a2a3) - ]a2ala3)-  ]a3a2al)- ]a 1 a3a2) 
1 2 3 1 2 3 + ]a2a3al) + ]a3ala2) ) 

These six basis functions span the six-dimensional subspace ~ of ~g3, 
which can be decomposed into irreducible subspaces invariant under $3: 
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gs and ga are the one-dimensional subspaces defined, respectively, by the 
symmetric and antisymmetric functions fs and fA. The remaining four- 
dimensional space splits into two irreducible subspaces transforming under 
the same two-dimensional representation of $3 (that of the triangular Young 
diagram, hence the name "triangular" subspace). Our choice for these two 
subspaces is given by f 'u and f~l spanning g,, and f~'2 and f~2 spanning g,,,. 

As If) runs over Y(3 it can be decomposed in this way into three sectors: 

The irreducible subspaces of ~s and ~A are one-dimensional, whereas 
those of ~,  are two-dimensional. Pure states may be represented by any 
irreducible subspace in any of these sectors. Two states represented by 
subspaces of different representations are physically distinct, as are the 
states represented by different subspaces of the same representation. These 
points have an obvious importance for what is to follow. 

Given IP as expressed in the form [P, Q] = 0, Schur's lemma implies 
that all matrix elements of the observable Q connecting different representa- 
tions are zero. It then follows that if there exist states corresponding to 
subspaces of different representations of SN, then they must be separated 
by a superselection rule (Greenberg and Messiah, 1969, p. 251). In other 
words, transitions between such states, for example, those corresponding 
to the symmetric and antisymmetric representations, or the symmetric and 
"triangular," are absolutely forbidden. 

However, states corresponding to subspaces of the s a m e  irreducible 
representation, such as g,, and g,,,, where the same representation is repeated 
twice, can be connected. Transitions c a n  therefore occur between such 
states, although with certain two-body collisions these transitions will also 
be forbidden, as we shall see. 

The situation in the general N-particle case is quite analogous. The 
Hilbert space then decomposes into a number of subspaces and transitions 
between states corresponding to certain of these subspaces--i.e., those of 
different representations--are not allowed. Thus, restrictions are imposed 
by IP such that certain states are rendered inaccessible to particles of the 
same species. If we consider the time evolution of the system as effected 
by some Hamiltonian, then we can conclude that what IP effectively says 
is that if the system starts in one irreducible representation, then it will 
always remain in that representation. 

These are important points, which we shall have cause to recall in our 
discussion of Pauli's problem below. 

Before we proceed any further, however, we have to deal with the 
question, first raised by Steinmann (1966), following a result suggested by 
Pauli (1958, p. 110), of whether para-particle theory is consistent with the 
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well-known cluster principle. This states that systems sufficiently separated 
in space may be treated as isolated systems, or, in other words, that the 
presence of particles of  Mars, say, should not affect the results of experiments 
performed on Earth. 

The core of Steinmann's objection can be summarized as follows: 
Consider a three-particle system consisting of  a two-particle cluster on Earth 
and the other particle on Mars. If the symmetry type of particles 1 and 2 
on Earth, when 3 is on Mars, is measured, then, the argument runs, the 
functions f~l and f~l can be distinguished, yet they are supposed to be 
indistinguishable, since they support the same irreducible representation of 
$3. Hence there is an inconsistency. 

That this argument is fallacious was clearly shown by Hartle and Taylor, 
but we shall demonstrate this again, in a slightly different way, in order to 
bring out some points that will be useful later. 

We begin by noting that we have chosen our basis functions above to 
be eigenvectors of P2, which interchanges particles labeled 1 and 2. (It can 
be shown that the basis functions chosen by Hartle and Taylor are not 
eigenvalues of P2, but that this does not affect the substance of their 
arguments.) The eigenvalues of this operator can easily be compared with 
those of  the place permutation operator/52 (Table I). An immediate con- 
sequence of these results is that eigenvalues of/52 serve to distinguish the 
symmetry types for "clusters" of  para-particles, whereas those of the corre- 
sponding particle permutation operator do not. [Hartle and Taylor believed 
that it was possible to have basis vectors for a "triangular" representation 
of $3 that are eigenvectors of P2 with the same eigenvalues. However, this 
is clearly not true. See French (1985, pp. 163-165).] 

Thus, the basic fallacy in Steinmann's argument is the supposition that 
the symmetry type of a two-particle cluster is determined by the eigenvalue 
of  P> He assumed that because this operator possesses opposite eigenvalues 
forf~l and f~l, for example, then the symmetry types for two-particle clusters 
are different for f 'n and f ~ .  However, this is not true. It can easily be shown 

Table I. Eigenvalues 

Basis functions Eigenvalues of P2 Eigenvalues of /5  z 

fs  +1 +1 
fA - a  - 1  

f ~  +1 +1 
f~l -1  +1 

f[~2 +1 -1  
f6'2 -1  -1  
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that both f[a and f~a give symmetric type functions for two-particle clusters 
and that f~'2 and f~2 both give antisymmetric types, although they also possess 
opposite eigenvalues for P2 (French, 1985, pp. 166-168). Thus, measure- 
ments of the symmetry type of two-particle clusters do not distinguish 
between f~a and f~a, which must be indistinguishable, since they belong to 
the same irreducible subspace, but between f~a and f~2, which is perfectly 
consistent, since these functions belong to different irreducible subspaces 
(Hartle and Taylor, 1969, p. 2048). 

We are now finally in a position to address Pauli's 1927 question. 

4. PAULI'S PROBLEM 

Pauli (1927) considered the collision between an electron and some 
N-particle system and concluded that such a collision could induce transi- 
tions between states of the system corresponding to different irreducible 
representations of SN. Thus, for example, a system of bosons could be 
transformed into a system of fermions via some mixed symmetry state. 

We have already noted that transitions between states corresponding 
to subspaces of different representations of SN are not allowed, since a 
superselection rule operators between such states. This means that transi- 
tions between the particles of Pauli's N-particle system cannot occur 
between states corresponding to the symmetric and antisymmetric rep- 
resentations, for example (Wigner, 1927, p. 883; Heisenberg, 1930, p. 156), 
nor between the symmetric and triangular representations. No such rule 
exists for states corresponding to equivalent representations, and transitions 
between such states are possible, in general. 

We shall now demonstrate, first, that these latter transitions cannot in 
fact occur for two-body collisions of a certain kind, but that, second, they 
may take place for collisions involving three particles. 

1 al(, a~, a~' a 3, a~', are orthogonal and We assume that all states aa, 
1 ' 2 a2 z are wave functions localized on the Earth, whereas a 3, that al,  a~l, a2, 

a 3' are localized on Mars. Thus a~ and a2 represent the Earth coordinates 
and a 3 the Mars coordinate. 

a 3 2 3 According to the cluster principle, terms of the form a~aa or a~a~ are 
then identically zero-- there is no overlap between the wave functions 
localized on the Earth and on Mars, respectively. 

The first step in our demonstration is to show that any symmetric 
function of  the observables Q can be expanded in terms of the /5's. This 
follows directly from Theorem 3.4A of Weyl (1946, Chapter IV). Dirac 
(1978, p. 218) sketched a proof  for the particular case of the observable 
being some perturbing energy V defined by ( f lVP[f ) .  However a more 
general proof  can be given as follows. 



1152 French 

Theorem. The following relation holds: 

(f'] PjQPiIf) = )~ (f'l QPiIf)(fIPj~PIIf) 
i 

where If') and If)  are kets for the assembly of the form given at the beginning 
of  Section 2. 

Proof We have 

This follows since 

otherwise 

<ftPjPiP~tf) = <ftPjPzP;tlf) 

( ~  commutes with Pl and /~i = P ~ ) ,  and ( f ]  and If) are orthogonal, so 
(flP~PiP~,l[f) has to equal unity, but can only do so if 

PjP, P~-'= 1 

which implies 

5 P, = P, 

Thus, the expression (f{Pjff'~Ptlf) reduces to a kind of Kronecker delta 
function: 

(f]PjPiPIIf>-= '~P,,~P, 

Using this and substituting for/~i, we obtain 

E (f'[QP, lf)(flPJPiPllf) 
i 

= ~ (f'[QPjPt]f) 
i 

= E (f'IPjQP, If) 
i 

=(f'lPjQnl[f) I 

Thus we have shown that 

(f'] Pj QP, If) = E (f'} OPi]f)(flPj fii P,[f) 
i 

which, following Dirac, we can write as 

Q ~  E c, Pi 
i 
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where c~ = (f'l QP~If) and the sign = means an equation in a restricted sense, 
the operators on the two sides being equal so long as they are used only 
with kets of the form Plf) and their conjugate imaginary bras. 

If Q is taken to be some interaction energy V, we then have 

(f'IPjVPIIf) = Y~ (f'] vP,[f)(flPj/5~P~lf) 
i 

or  

V = ~  c,/Si (7) 
i 

Thus, the interaction energy is equal, in the restricted sense, to a linear 
function of the P's with coefficients ci, given by (f'] VPi[f). 

We now assume that a two-body force only acts between the particles 
(such as the Coulomb force between electrons, to give an obvious example), 
so that the interaction energy V will consist of a sum of parts each referring 
to only two particles. This results in the vanishing of all matrix elements V 
except those for which/5i is either the identical permutation or an interchange 
of two "places," i.e., /5 =/51 or/52. 

Thus, for two-body forces V can be written as 

V= V(ala2)+ V(a2a3)+ V(ala3) 

where the terms in parentheses refer to place interchanges. Expression (7) 
then reduces to 

V~ 1/1+ ~ V(aras)/5~ (8) 
r ~ s  

where V(ara~) is the matrix element referring to the interchange of"p laces"  
ar and as occupied by the particles. 

It should be noted that this assumption implies that we are only 
considering first-order perturbation terms and thus the eigenvalues of (8) 
will give only the first-order corrections to the transitions. 

Granted this assumption, we can now write our expansion of V as 

V : ClV 1 -[- c202---~ c3/53 --~ c4/54 + c5/55 + c6/56 (9) 

where P1, P 2 , . . . ,  156 are the place permutation operators defined in the 
usual way. 

Now we need to show that certain terms in this expansion are zero. 
This means looking at the coefficients c~, i.e., the first term in the product 

(f'[ VPi[f)(f[Pj/siPt]f) 

since it is this that will in general be zero for certain/5~. In the second term, 
for any value of/5i that might give us zero we can always find values of Pj 
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and P~ that give 1. In other words, there is no generality to be had from 
the second term because of the particular nature of  Pj and Pt- 

We therefore suppose that V is some suitable short-range interaction 
such that it cannot reach to Mars and thus cannot induce transitions between 
the eigenstates a 3 and a y of  the Mars-bound particle and eigenstates a 1, 
a v,  a 2, a 2' of the two located on Earth. Thus, all interaction terms containing 

1V(ala3)a3 o r  a3'V(ala3)al 1 are zero. The only either a 3 o r  a 3' of  the form a 1 
terms to survive are those for which both a 3 and a 3' are outside the interaction 
term, which means that the only terms in equation (9) that are not zero are 
those containing interaction terms of the form V(ala2) between a v, a 2', a 1, 
a 2 only (see Appendix A). Thus, the only coefficients in our expansion that 
survive are Cl and c2 associated with/32 and/52, these being the only ones 
with interaction terms V(ala2) of the form just described. 

We therefore obtain 

V ~ C l P 1  -[- c 2 / 5  2 (10) 

Thus, V commutes with /52 and we can write 

[v, P2]=0 

Therefore for the particular case of  the two-body collisions under 
discussion, there can be no transitions between states that possess opposite 
eigenvalues of  the place permutat ion operators/52. Since the two subspaces 
of  the same triangular representation are spanned by two sets of  eigenvectors 
f'l 1, f ~  and f~'2, f~2, respectively, which possess opposite eigenvalues of/52, 
we conclude that transitions are forbidden between states corresponding to 
these subspaces. In other words, given these particular conditions, there 
can be no transitions between states corresponding to equivalent irreducible 
representations. 

However, such transitions may occur in general, as we shall see directly. 
The relevance of all this for Pauli's problem is as follows. I f  a third 

particle interacts with a two-particle subsystem, then transitions between 
bosonic and fermionic type states can occur in general, as Pauli suggested. 
However, if the third particle is located on Mars, then our discussion of 
the cluster principle above confirms that its mere existence cannot produce 
such transitions for two-particle systems on Earth. 

We now go on to demonstrate how the general three-body collision 
(by which we mean collisions among three bodies, not necessarily simul- 
taneously), can induce transitions between states corresponding to 
equivalent representations. 

In this case, a~, a~/, a33, a 3' are taken to be the wave functions localized 
on Earth, with a 2, a 2' on Mars. The cluster principle then dictates that 

1 2 3 2 terms of the form ala~ or alal  are identically zero. Our results on p. 1153 
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are obviously still applicable and the interaction energy can be taken in the 
same form. 

If V is again short range, then all interaction terms containing either 
' 2' 1 a 2 or a 2, i.e., of the form all V(ala2)a 2 or a2 V(ala2)al, are zero (see 

Appendix B). Thus, the only terms of the expansion to survive are those 
containing interaction terms of the form V(ala3) between a 1, a v, a 3, a 3' 
only. The only coefficients not equal to zero are therefore c~ and c3 associated 
with 151 and/53. 

We therefore obtain 

V~- ClPl-~ C3P3 ( 1 1 )  

Since we chose our wave functions to be eigenfunctions of/52, we could 
conclude from our previous result (10) that transitions could not take place 
between states possessing opposite eigenvalues of/52. No such conclusion 
can be drawn from equation (11) because our wave functions are not 
eigenfunctions of/53 (French, 1985, p. 162 and pp. 178-179). 

Thus, our two-particle cluster on Earth is in this case neither bosonic 
nor fermionic. Of course, we could always make it so, as before, through 
a unitary transformation that would make the wave functions eigenfunctions 
of/33, but obviously in that case they could not also be eigenfunctions of 
/52, since /53 and/52 do not commute. 

We can conclude, therefore, that with three-body collisions transitions 
can occur between states corresponding to subspaces spanned by the vectors 
f ~ ,  f~l and f~'2, f~2 through the collision of particle 1 with particle 3. In 
this case states corresponding to ~,, and ~c, can be connected. Thus, in a 
three-body collision involving particle 3 colliding with particle 1 followed 
by 2, the first collision can take the particles from a state supported by one 
subspace to a state supported by another, whereas the second can induce 
transitions between states supported by the same (the latter) subspace. 

5. THE STATISTICS OF PARA-PARTICLES 

These results clearly possess certain implications with regard to the 
weighting assignments in para-particle statistics. To determine these, we 
need to consider whether or not transitions are possible between our initial 
arrangement and some final one. The statistical weight given to the latter 
will then depend upon which of these transitions are allowed. 

Although any given arrangement corresponds to two possible states 
represented by different subspaces of the same representation (e.g., ~,, and 
~,,,), it is not necessary to consider transitions from both initial states, since 
the same results will obviously be obtained whichever pair of eigenfunctions 
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are taken. Also, we need consider only one vector out of  either of  the two 
pairs, since there are no transitions within a subspace. 

Thus we choose f~l, which we recall is given by 

1 1 2 3 1 2 3 1 2 3 
f ' 11  = 2 " - ' ~  ( 2 l a l a 2 a 3 ) + 2 l a 2 a l a 3 ) - I a ~ a 3 a 2 )  

1 2 3 1 2 3 1 2 3 -la3a2al)-la2a3al) -la3ala2)) 
to represent our initial state, and the final one will be represented by the 
vector obtained by setting certain wave functions equal to one another, 
depending on the final state considered. 

With one particle in each state, a 1, a 2, and a 3 a r e  all different and the 
derived function is simply f~l. In this case, with three-body collisions there 
exists the possibility of  transitions taking place between states represented 
by f'11 and f~2, giving a doubling of the allowed states and hence also the 
weight. Thus, in this case a weighing factor of  2 rather than 1 is assigned. 

With all three particles in the same state we have a3=a2=a ~ and 
transitions to the final state do not occur, since the derived function equals  
zero. However,  with two particles in one state, so that we have a 3 =  a 1, for 
example, we obtain 

1 1 2 1 1 2 1 1 2 1 f~l = - ~  (lala2a3)+ ]a2a~a3)- 2ta~a3a2)) 

Similarly, 

vt - -  1 1 2 1 1 2 1 1 2 1 -]a2ala3)) ~(-]ala2a3)+ 2]ala3a2) f 12 - -  

In this case there is no doubling of states, because f~'2 is a multiple of 
f~l and so there is only one set of  transitions from the initial to the final 
state. Accordingly, a weight of  only 1 is assigned for three-body collisions. 

Continuing in this manner,  we obtain a list of  weights as shown in 
Table II. Included for comparison are the weights for particles obeying 
Gentile 's (1961) para-gas statistics (see also Wergeland, 1944; Schubert, 
1946; McCarthy,  1955). In a para-gas the average number  of  particles in a 
group of states is dependent  on a parameter  d giving the maximum number  
of  particles that can occupy any given state. This is simply a form of 
generalized quantum statistics, with the Fermi-Dirac  and Bose-Einstein 
cases resulting when d = 1 and d = ~ ,  respectively. In particular there is 
no doubling of weights due to transitions between subspaces supporting 
equivalent representations. 

From Table II  we get Table III ,  giving the distribution numbers and 
Tables IV and V, setting out quite explicitly the various probabilities for 
the different kinds of  statistics. In the latter the statistical nature of  both a 
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Table 1I. Weights 

1157 

Final state MB FD BE Para-gas Para-particle 

a l # a 2 ~ a  3 

a 3 ~ a  1 

a 2 = a  1 

a 3 = a 2 

a l = a  2 

a 2 = a  3 

a l = a  3 

a3 = a 2 = a  1 

a 3 = o l = a  2 
a l = a 2 = a  3 

Total weights 

6 1 1 1 2 
3 0 1 1 1 
3 0 1 1 1 
3 0 1 1 1 
3 0 1 1 1 
3 0 1 1 1 
3 0 1 1 1 
1 0 1 0 0 
1 0 1 0 0 
1 0 1 0 0 

27 1 10 7 8 

Table III. Distribution Numbers  

Distribution 
number  MB FD BE Para-gas Para-particle 

l{i n a m  

n a - -  

n a - -  

12 1 3 3 4 
6 0 2 2 2 
1 0 1 0 0 

12 1 3 3 4 
6 0 2 2 2 
1 0 1 0 0 

12 1 3 3 4 
6 0 2 2 2 
1 0 1 0 0 

Table IV. Probabilities 

Probability MB FD BE Para-gas Para-particle 

'-I! n a --  

r l a =  

h a =  

4/9 1 3/10 3/7 1/2 
2/9 0 2/10 2/7 1/4 
1/27 0 1/10 0 0 

4/9 1 3/10 3/7 1/2 
2/9 0 2/10 2/7 1/4 
1/27 0 1/10 0 0 

4/9 1 3/10 3/7 1/2 
2/9 0 2/10 2/7 1/4 
1/27 0 1/10 0 0 
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Table V. Probabilities 

Probability MB FD BE Para-gas  Para-particle 

One in each state 2/9 1 1/10 1/7 1/4 
Two in any state 2/3 0 6/10 6/7 3/4 
Three in any state 1/9 0 3/10 0 0 
At least one in any state 19/27 1 6/10 5/7 3/4 

para-gas and of para-particles is clearly revealed and we can see that the 
notion that these are merely "intermediate" statistics of  some kind is too 
simplistic. Thus, for both cases, the probabili ty of  finding one particle in 
any state lies somewhere between that for Bose-Einstein and Fermi-Dirac  
statistics, but, on the other hand, the tendency for two particles to cluster 
together in any state is greater than for bosons, (this is not true of  course 
for the three-particle case). 

However,  the more interesting comparison is between para-gas and 
para-particle statistics themselves. First of  all, the total number  of  allowed 
states is smaller for the former than for the latter. Second, although the 
probabili ty of  finding two particles in any state is greater for the para-gas 
case, the probabili ty of  finding one particle in any state and that of  finding 
one in each state is greater for para-particles. Furthermore, there is a greater 
probabili ty of  finding at least one particle in any of the three states in 
para-particle statistics as compared to those of  the para-gas. We can con- 
clude from all this that the statistical behavior of  a para-gas and that of  an 
assembly of  para-particles differ in that the former exhibit a greater tendency 
to cluster together than the latter, or, conversely, that the latter exhibit a 
statistical repulsion as compared  to the former. 

6. C O N C L U S I O N  

In their seminal paper,  Hartle and Taylor (1969, p. 2051) remarked 
that, "al though there is no theoretical reason to exclude para-particles, their 
properties are sufficiently disagreeable for one to hope sincerely that there 
will continue to be no evidence in their favour." 

The simple discussion above may serve to suggest that this appraisal 
of  the situation was perhaps a little too pessimistic and that the investigation 
of  some of the properties of  these entities is not quite as unapproachable  
as is often supposed. Beyond this I hope to have shown that the general 
formalism possesses a certain intrinsic elegance and may provide further 
insight into the statistical behavior  of  N-particle systems. 
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A P P E N D I X  A 

As an example ,  cons ide r  the coefficient c3 assoc ia ted  with /~3 i n  

expans ion  (9): 

( f ' lVP3l f )=I f f f ' *VP3fda lda2da3  

E x p a n d i n g  V, I f ) ,  and  If ' ) ,  we have 

(f '[  VP31f) 

f f f f  1'* 2'* 3'* = a~ a2 a3 [V(ala2)+ V(a2a3)+ V(ala3)] 

x P3a~a~a~ da~ da2 da3 

f f f  1'* 2'* 3'* = al a2 a3 [V(ala2)+ V(a2a3)+ V(ala3)] 

1 2 3 • a3a2a~ dal da2 da3 

f f fI  3'* 1 1'* 2"* 2 3  = a3 a3 [a l  a2 V(ala2)a2al] dal da2 da3 

f f  l'* 3r 2'* 3,*V(a2a3)a~a~]dalda2da 3 + al alia2 a3 

I f 2'* 2r r* 3'* 13 + a2 a2tal a3 V(ala3)a3al] dal da2 da3 

= a3 a3 [a l  a l V ( a l a 2 ) a 2  a2] dal da2 da3 

f f  1'* 3 2 ' * 2  3 " 1  + al al[a2 a2V(a2a3)a3 a3] dal da 2 da3 

II 2'* 2 1'* 3 3'* 1 
q- a 2 a2 [a l  alV(ala3)a3 a3]dalda2da3 

N o w  cons ider  each o f  these terms in turn. In  the first, one has 

al'*a3V(ala2)a2"*a 2 

but  V is shor t - range  and  cannot  connect  any  eigenstates  with a 3 or  a y. 
Thus,  V(ala2) cannot  reach  be tween  a 3 and  a2 2 and  so this te rm is zero. 
Similar ly ,  

2'* 2 3'* 1 
a2 a2V(a2a3)a3 a3 

and 

~I'*~v(~1~3)~3*~ 
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are also zero because  o f  the  na ture  of V, and  thus we ob ta in  

<f'l VP3[f) = 0 

or  C3=0.  

In  the same way  it can be shown tha t  c4, c5, and  c6 are also iden t ica l ly  
zero. 

However ,  Cl and  c2 con ta in  terms for  which  bo th  a 3 and  a 3' fall  ou ts ide  
the  in te rac t ion  term,  thus  giving finite nonze ro  values  to these  terms.  Con-  
s ider ,  for  example ,  c2: 

( f ' l V P 2 [ f ) = f f f  f'*VP2fda, da2da3 

E x p a n d i n g  gives 

<f'[ VP2lf) 

f f f  1'* 2'* 3'* = al 32 a3 [V(ala2)+ V(a2a3)+ V(ala3)] 

1 2 3 • P2ala2a 3 dal da2 da3 

f f f  1'* 2'* 3'* = al a2 a3 [V(ala2)+V(a2a3)-FV(ala3)] 

x ala~a~ dal da2 da3 

f l y  3 ' * 3  1'* 2'* 1 2  = a3 a3[al a2 V(ala2)a2al] dal da2da3 

f f f f  1 " 2  2'* 3'* 1 3  + al a1[a2 a3 V(a2a3)a2a3] dal da2 da3 

a3)ala3] dal da3 -f- a2 a 2 [ a l  a3 V(al da2 

f f f  3 ' * 3  1'* 2 1 2 ' *  = a3 a3[31 alV(ala2)aza2 ]dalda2da3 

f f f  1 " 2  2'* l 3 ' * 3  + al a1[a2 a2V(a2a3)a3 a3] dal da2 da3 

fff 1 " 2  3 ' * 3  + a2 a2[al alV(ala3)a3 a3]dalda2da3 

It can immed ia t e ly  be seen that  the in te rac t ion  te rm 

1'* 2 1 2'* al a1V(ala2)a2a2 
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is nonzero ,  as the shor t - range  character is t ic  o f  V cer ta in ly  does  a l low 
1'* 2'* V(ala2) to induce  t rans i t ions  be tween  a l  and  a2 or  a 2 and  a~. However ,  

the  express ion  as a whole  can only be finite if  a 3 '= a 3. This fol lows of  
course f rom the o r thogona l i ty  of  these funct ions.  Thus,  a 3' and  a 3 must  not  
only  over lap  in o rder  for  e2 to be nonzero ,  they  must  in fact be equal .  

The second  term above  contains  

2'* 1 3'* 3 
a2 a2V(aza3)a3 a3 

2'* 3'* which is zero,  since V(a2a3) cannot  connec t  a2 with a2 or a~ with a 3. 
Similar ly ,  the th i rd  te rm above  can be shown to b e zero,  and  we thus ob ta in  

C 2 = finite i f  a y = a 3 

It can be shown in the  same way that  the only term in cl that  is finite 
is that  con ta in ing  V(ala2) and then only i f  a y =  a 3. 

A P P E N D I X  B 

C o n s i d e r  now the coefficient c2 assoc ia ted  with/52: 

<f'l VP2If ) 

f f f f  1'* 2'* 3'*r = a 1 a2 a3 kV(ala2)+V(a2a3)+V(ala3)] 

x P2ala2a 3 dal daa da3 

E x p a n d i n g  as before ,  we obta in  

(f'l VP2lf) 

= a ,  a 2 a 3 [V(ala2)+ V(a2a3)+ V(a,a3)] 

1 9 3 
x azaia3 da~ da2 da3 

f f f f  3 ' * 3  1 " 2  1 2 ' *  = a 3 a3[aa alV(alaz)a2a2 ]daldazda3 

f f f f  1'* 2r 2'* 1'* 3'* 3 + al ada2 al V ( a 2 a 3 ) a 3  a3] dal da2 d a  3 

+ a2 a2[al al V(alas)aY*a 3] dal da2 da 3 

Again  the shor t - range  na ture  of  V impl ies  that  the in terac t ion  terms in these 
express ions  are all zero. 
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However,  cl and c3 contain terms for which both a 2 and a 2' fall outside 
the interaction term, giving finite nonzero values. Expanding c3 gives 

(f ' l  VP3lf) 

I f f  3, 
= al a2 a3 [V(ala2)+V(a2a3)+V(ala3)]  

1 2 3 
• a3a2al dal da2 da3 

: a3 a 3 [ a l  a2V(ala2)ala2 ] dal da2 da3 

f f f  1 " 3  2 ' * 2  3'* , q- al al[a2 a2V(a2a3)a3 a3]  dal da2 da 3 

f f f f f  2'* 2r 1'* 3 1 3'* + a2 a2lal alV(ala3)a3a3 ]dalda2da3 

and now 

a11*a V(ala3)ala  * 

is nonzero. Repeating this procedure for the other terms, we obtain 

as required. 
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